Wrapping
ISAPI
You now have a simple extension written directly
to ISAPI, but programming against raw ISAPI is rather awkward. It
sure would be nice to have some more object-oriented wrappers.
Luckily, ATL Server provides exactly that. The
CServerContext class is a COM object that provides a
wrapper around the ECB.
class CServerContext :
public CComObjectRootEx<CComMultiThreadModel>,
public IHttpServerContext {
public:
BEGIN_COM_MAP(CServerContext)
COM_INTERFACE_ENTRY(IHttpServerContext)
END_COM_MAP()
void Initialize(__in EXTENSION_CONTROL_BLOCK *pECB);
LPCSTR GetRequestMethod();
LPCSTR GetQueryString();
LPCSTR GetPathInfo();
LPCSTR GetScriptPathTranslated();
LPCSTR GetPathTranslated();
DWORD GetTotalBytes();
DWORD GetAvailableBytes();
BYTE *GetAvailableData();
LPCSTR GetContentType();
BOOL GetServerVariable(
LPCSTR pszVariableName,
LPSTR pvBuffer,
DWORD *pdwSize);
BOOL WriteClient(void *pvBuffer, DWORD *pdwBytes);
BOOL AsyncWriteClient(void *pvBuffer, DWORD *pdwBytes);
BOOL ReadClient(void *pvBuffer, DWORD *pdwSize);
BOOL AsyncReadClient(void *pvBuffer, DWORD *pdwSize);
BOOL SendRedirectResponse(__in LPCSTR pszRedirectUrl);
BOOL GetImpersonationToken(__out HANDLE * pToken);
BOOL SendResponseHeader(
LPCSTR pszHeader = "Content-Type: text/html\r\n\r\n",
LPCSTR pszStatusCode = "200 OK",
BOOL fKeepConn=FALSE);
BOOL DoneWithSession(__in DWORD dwHttpStatusCode);
BOOL RequestIOCompletion(__in PFN_HSE_IO_COMPLETION pfn,
DWORD *pdwContext);
BOOL TransmitFile(
HANDLE hFile,
PFN_HSE_IO_COMPLETION pfn,
void *pContext,
LPCSTR szStatusCode,
DWORD dwBytesToWrite,
DWORD dwOffset,
void *pvHead,
DWORD dwHeadLen,
void *pvTail,
DWORD dwTailLen,
DWORD dwFlags);
BOOL AppendToLog(LPCSTR szMessage, DWORD *pdwLen);
BOOL MapUrlToPathEx(LPCSTR szLogicalPath, DWORD dwLen,
HSE_URL_MAPEX_INFO *pumInfo);
};
The
CServerContext class provides a somewhat more convenient
wrapper for the ISAPI interface. Before you use it, you need to add
an ATL module object to your project and initialize it in DLL main.
This code takes care of the housekeeping:
// Our module class definition
class CHelloISAPI2Module :
public CAtlDllModuleT<CHelloISAPI2Module> {};
// Required global instance of module.
CHelloISAPI2Module _AtlModule;
// Initialize / shutdown module on DLL load or unload
BOOL APIENTRY DllMain( HMODULE hModule,
DWORD ul_reason_for_call, LPVOID lpReserved ) {
// Set up shared data for use by CServerContext
return _AtlModule.DllMain(ul_reason_for_call, lpReserved);
}
Having initialized shared data that
CServerContext makes use of, we can now take advantage of
CServerContext:
DWORD WINAPI HttpExtensionProc(EXTENSION_CONTROL_BLOCK *pECB) {
CComObject< CServerContext > *pCtx;
CComObject< CServerContext >::CreateInstance( &pCtx );
pCtx->Initialize( pECB );
// We use this smart pointer to ensure proper cleanup
CComPtr< IUnknown > spContextUnk( pCtx );
char *header =
"<html>"
"<head>"
"<title>Hello from ISAPI</title> "
"</head>"
"<body>"
"<h1>Hello from an ISAPI Extension</h1>";
DWORD size = static_cast< DWORD >( strlen( header ) );
pCtx->WriteClient( header, &size );
char *intro = "<p>Your name is: ";
size = static_cast< DWORD >( strlen( intro ) );
pCtx->WriteClient( intro, &size );
size = static_cast< DWORD >(
strlen( pCtx->GetQueryString( ) ) );
pCtx->WriteClient(
const_cast< LPSTR >(pCtx->GetQueryString( )), &size );
char *footer =
"\r\n</body>\r\n"
"</html>\r\n";
size = static_cast< DWORD >( strlen( footer ) );
pCtx->WriteClient( footer, &size );
return HSE_STATUS_SUCCESS;
}
The bold lines show where we've replaced direct
calls to the ECB with calls via the context. The
WriteClient method is at least a little shorter, but we
actually haven't gained much at this point. Luckily, there's more
API wrapping to be done.
Request and
Response Wrappers
Anyone who has done ASP or
ASP.NET development is familiar with the Request and
Response objects. The former gives access to the contents
of the HTTP request: URL, query string, cookies, and so on. The
latter gives you a way to write data to the output stream. ATL
Server provides similar wrappers that make both reading and writing
from the ECB much more pleasant.
The CHttpRequest object is a wrapper
object that lets you get at the contents of the HTTP request:
class CHttpRequest : public IHttpRequestLookup {
public:
// Constructs and initializes the object.
CHttpRequest(
IHttpServerContext *pServerContext,
DWORD dwMaxFormSize=DEFAULT_MAX_FORM_SIZE,
DWORD dwFlags=ATL_FORM_FLAG_NONE);
CHttpRequest(IHttpRequestLookup *pRequestLookup);
// Access to Query String parameters as a collection
const CHttpRequestParams& GetQueryParams() const;
// Get the entire raw query string
LPCSTR GetQueryString();
... Other methods omitted - we'll talk about them later
}; // class CHttpRequest
The CHttpRequest object gives you easy
access to everything in the request. Using the
CHttpRequest object simplifies getting at query string
variables. In the raw C++ extension code, I cheated and just passed
data (such as ?Chris), to make using that data easier.
However, typical web pages take named query parameters separated
with the ampersand (&) and potentially containing
special characters encoded in hex:
http://localhost/HelloISAPI2/HelloISAP2.dll?name=Chris&motto=I%20Love%20ATL
Unfortunately, decoding and parsing query
strings in their full glory requires quite a bit of work to get
right, which is where ATL Server really starts to shine via the
CHttpRequest class:
DWORD WINAPI HttpExtensionProc(EXTENSION_CONTROL_BLOCK *pECB) {
CComObject< CServerContext > *pCtx;
CComObject< CServerContext >::CreateInstance( &pCtx );
pCtx->Initialize( pECB );
// We use this smart pointer to ensure proper cleanup
CComPtr< IUnknown > spContextUnk( pCtx );
CHttpRequest request( pCtx );
char *header =
"<html>"
"<head>"
"<title>Hello from ISAPI</title>"
"</head>"
"<body>"
"<h1>Hello from an ISAPI Extension</h1>";
DWORD size = static_cast< DWORD >( strlen( header ) );
pCtx->WriteClient( header, &size );
CStringA name;
name = request.GetQueryParams( ).Lookup( "name" );
if( name.IsEmpty( ) ) {
char *noName = "<p>You didn't give your name";
size = static_cast< DWORD >( strlen( noName ) );
pCtx->WriteClient( noName, &size );
}
else {
char *intro = "<p>Your name is: ";
size = static_cast< DWORD >( strlen( intro ) );
pCtx->WriteClient( intro, &size );
size = name.GetLength( );
pCtx->WriteClient( name.GetBuffer( ), &size );
}
char *footer =
"\r\n</p>\r\n"
"\r\n</body>\r\n"
"</html>\r\n";
size = static_cast< DWORD >( strlen( footer ) );
pCtx->WriteClient( footer, &size );
return HSE_STATUS_SUCCESS;
}
The bold lines show where we're calling into the
CHttpRequest object and parsing the named query parameter
name. If it's encoded with embedded spaces or other
special characters, or if it's included with other query
parameters, ATL Server parses it correctly.
One minor thing that might seem odd is the use
of CStringA in the previous code sample. Why didn't I just
use the plain CString? If you look in the documentation
for CHttpRequestParams::Lookup (the method I used to get
the query string values), you'll see this:
class CHttpRequestParams : ... {
...
LPCSTR Lookup(LPCSTR szName) const;
...
};
Notice that the return type is LPCSTR,
not LPCTSTR. In general,
when dealing with strings coming in or going out via HTTP, ATL
Server explicitly uses 8-bit ANSI character strings.
The CString class is actually a string
of TCHARs. As you recall from Chapter 2, "Strings and Text," this means that
the actual type of the underlying characters changes depending on
your compile settings for Unicode. However, the return type for the
Lookup method never changes: It's always ANSI. So, the
sample code uses CStringA explicitly to say, "I don't care
what the UNICODE compile setting is, I always want this to be 8-bit
characters."
On the output side, ATL Server provides the
CHttpResponse class:
class CHttpResponse :
public IWriteStream,
public CWriteStreamHelper {
public:
// Implementation: The buffer used to store the
// response before the data is sent to the client.
CAtlIsapiBuffer<> m_strContent;
// Numeric constants for the HTTP status codes
// used for redirecting client requests.
enum HTTP_REDIRECT {
HTTP_REDIRECT_MULTIPLE=300,
HTTP_REDIRECT_MOVED=301,
HTTP_REDIRECT_FOUND=302,
HTTP_REDIRECT_SEE_OTHER=303,
HTTP_REDIRECT_NOT_MODIFIED=304,
HTTP_REDIRECT_USE_PROXY=305,
HTTP_REDIRECT_TEMPORARY_REDIRECT=307
};
// Initialization
CHttpResponse();
CHttpResponse(IHttpServerContext *pServerContext);
BOOL Initialize(IHttpServerContext *pServerContext);
BOOL Initialize(IHttpRequestLookup *pLookup);
// Writing to the output
BOOL SetContentType(LPCSTR szContentType);
HRESULT WriteStream(LPCSTR szOut, int nLen, DWORD *pdwWritten);
BOOL WriteLen(LPCSTR szOut, DWORD dwLen);
// Redirect client to another URL
BOOL Redirect(LPCSTR szUrl,
HTTP_REDIRECT statusCode=HTTP_REDIRECT_MOVED,
BOOL bSendBody=TRUE);
BOOL Redirect(LPCSTR szUrl, LPCSTR szBody,
HTTP_REDIRECT statusCode=HTTP_REDIRECT_MOVED);
// Manipulate various response headers
BOOL AppendHeader(LPCSTR szName, LPCSTR szValue);
BOOL AppendCookie(const CCookie *pCookie);
BOOL AppendCookie(const CCookie& cookie);
BOOL AppendCookie(LPCSTR szName, LPCSTR szValue);
BOOL DeleteCookie(LPCSTR szName);
void ClearHeaders();
void ClearContent();
// Send the current buffer to the client
BOOL Flush(BOOL bFinal=FALSE);
... other methods omitted for clarity
}
}; // class CHttpResponse
The CHttpResponse class provides all
the control you need to manipulate the response going back to the
client. But the best thing about CHttpResponse isn't in
this class definitionit's in the base class,
CWriteStreamHelper:
class CWriteStreamHelper {
public:
... Other methods omitted for clarity
CWriteStreamHelper& operator<<(LPCSTR szStr);
CWriteStreamHelper& operator<<(LPCWSTR wszStr);
CWriteStreamHelper& operator<<(int n);
CWriteStreamHelper& operator<<(short int w);
CWriteStreamHelper& operator<<(unsigned int u);
CWriteStreamHelper& operator<<(long int dw);
CWriteStreamHelper& operator<<(unsigned long int dw);
CWriteStreamHelper& operator<<(double d);
CWriteStreamHelper& operator<<(__int64 i);
CWriteStreamHelper& operator<<(unsigned t64 i);
CWriteStreamHelper& operator<<(CURRENCY c);
};
These
operator<< overloads mean that
CHttpResponse can be used much like C++ iostreams can, and
they make it much, much easier to build up your output. Using
CHttpResponse, our final HttpExtensionProc now
looks like this:
DWORD WINAPI HttpExtensionProc(EXTENSION_CONTROL_BLOCK *pECB) {
CComObject< CServerContext > *pCtx;
CComObject< CServerContext >::CreateInstance( &pCtx );
pCtx->Initialize( pECB );
// We use this smart pointer to ensure proper cleanup
CComPtr< IUnknown > spContextUnk( pCtx );
CHttpRequest request( pCtx );
CHttpResponse response( pCtx );
response << "<html>" <<
"<head>" <<
"<title>Hello from ISAPI</title>" <<
"</head>" <<
"<body>" <<
"<h1>Hello from an ISAPI Extension</h1>";
CStringA name;
name = request.GetQueryParams( ).Lookup( "name" );
if( name.IsEmpty( ) ) {
response << "<p>You didn't give your name";
} else {
response << "<p>Your name is: " << name;
}
response << "</p>" <<
"</body>" <<
"</html>";
return HSE_STATUS_SUCCESS;
}
This use of the
CHttpResponse object gives us a much simpler programming
model. All those ugly casts are gone, and we don't need to worry
about presizing anything.
The use of the CServerContext,
CHttpRequest, and CHttpResponse objects does make
the basics of request processing easier, but other issues haven't
yet been addressed. IIS does some subtle work with threading, and
if you don't handle threads properly, you'll destroy your server's
performance. There's also dealing with form fields and form
validation, something every web app has to do. Finally, does it
really make sense that you have to recompile your C++ code every
time you want to change some HTML?
To address these issues, let's take a look at
how ATL Server implements the ISAPI extension.
|